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Abstract—Learning-based mechanical fault diagnosis (FD)
methods have been widely investigated in recent years. To
overcome the shortages of centralized learning techniques from
the perspective of data privacy and high communication overhead,
federated learning (FL) is emerging as a promising method for
FD. However, a large number of labeled fault data is required for
the FL technique, which is not accessible in real-world industrial
Internet-of-Things (IIoT) scenarios. To address the data scarcity
challenge (i.e., few-shot), we propose a collaborative learning
method that incorporates meta-learning into the federated learning
framework. Specifically, our approach learns an effectively global
meta-learner, which can quickly adapt to a new machine or a
newly encountered fault category with just a few labeled examples
and training iterations. Further, we theoretically analyze the
convergence of the proposed algorithm in a non-convex setting. We
conduct an extensive empirical evaluation of two real-world fault
diagnosis datasets and they demonstrate that our proposed method
achieves significantly faster convergence and higher accuracy,
compared with the existing approaches.

Index Terms—Federated Learning, Meta-learning, Few-shot
Learning, Industrial IoT (IIoT), Intelligent Fault Diagnosis

I. INTRODUCTION

Nowadays, the Internet-of-Things (IoT) is changing the shape
of communication and has an increasing number of application
scenarios. Industrial Internet of Things (IIoT), an emerging
sub-paradigm of IoT, is promoting the development of Industry
4.0 [1], [2]. With many distinctive features, such as multiple
services, high connectivity, low latency, and scalability, IIoT is
highly successful in various industrial scenarios, e.g., anomaly
detection, digital twin, and robotic system navigation. Other
than these, IIoT also has great value in facilitating intelligent
fault diagnosis (IFD).

Fault diagnosis (FD) is an enduring topic in industry.
In recent years, with the prosperity of machine learning
techniques, there are many works focused on learning-based
FD. Most of them are centralized learning-based (CL) methods.
Typically, the CL method collects large quantities of data from
multiple institutions into a unified data node, then utilizes
machine learning methods to learn a model. Despite this
surge in research works, the CL method does not apply
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to every IIoT scenario, since (1) the required training data
are mostly generated from edge devices (e.g., numerous IoT
devices and gateways), which may have limited communication
capability to upload the high amount of data [3]; (2) due to
the growing concerns of data privacy, some data owners are
reluctant from sharing their data. Federated learning (FL) [4]
is a representative member in distributed machine learning
paradigm. It accomplishes machine learning modeling while
protecting the privacy of the clients (organizations or users)
involved in the training. Several recent studies [5], [6] that
demonstrate FL related methods, including self-supervised and
supervised learning, perform well on mechanical FD.

However, both self-supervised learning and supervised
learning methods are currently difficult to implement in real
industrial FD. In particular, self-supervised learning typically
requires more computational resources and network bandwidth,
and thus cannot achieve real-time industrial edge intelligence,
while traditional supervised learning requires a large amount
of labeled training data, which is difficult to obtain in real
IIoT scenarios. Finding an effective approach to overcome the
limited data challenges (i.e., few-shot fault diagnosis) is still
an unsolved problem in the existing research. In this paper, we
aim to solve the data scarcity challenge in privacy-protected
FD and propose an approach that overcomes the limitation of
self-supervised learning and supervised learning.

Recall that the above learning-based FD methods all require
a large number of samples to train the model, while humans
can learn new concepts via a small number of examples. For
example, a person who knows how to ride a bicycle can
quickly master riding a motorbike without even needing a
demonstration. Why can humans learn quickly and accurately
with very little direct supervision? Probably because humans are
adept at using experience to accelerate learning. Initialization-
based meta-learning methods (e.g. MAML [7]), and its recent
developments, aim to learn a good model (a model with high
performance initialization weights), such that the model can
solve newly encountered learning tasks after only a small
number of training samples or several gradient descents. To
this end, we incorporate this fast learning mechanism of meta-
learning into our approach.

Concretely, we incorporate meta-learning into the federated
learning framework, resulting in a Few-shot Fault Diagnosis
method with Federated Meta-learning framework (FedMeta-978-1-6654-3540-6/22/$31.00 © 2022 IEEE
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Fig. 1. The pipelines of our FedMeta-FFD framework.

FFD). We summarize the main contributions of this paper
below:

(1) We propose a novel few-shot Fault Diagnosis method
with a Federated Meta-learning framework (FedMeta-FFD),
which relies on initialization-based meta-learning and federated
learning to solve few-shot FD tasks.

(2) Theoretically, we perform a convergence analysis of the
proposed FedMeta-FFD algorithm on the non-convex setting.

(3) Empirically, we conduct an extensive empirical evaluation
on two real-world FD datasets and demonstrate that our
method achieves significantly higher convergence and accuracy
performance, compared with the other approaches.

II. RELATED WORKS

Federated learning not only makes full use of the compu-
tational power of all clients but also guarantees data privacy.
Owing to that, FL has garnered much attention in IFD. Chen
et al. [6] propose an FL method with dynamic weighted
averaging for bearing fault diagnosis. Huang et al. [7] propose a
compound fault identification and decoupling method using an
IIoT-based monitoring system and achieve promising diagnostic
performance.

Few-shot learning, based on the N-way K-shot [8] training
setting, aims to learn the ability to adapt quickly to new tasks.
Meta-learning is naturally adapted to few-shot learning and
can improve model performance [9]. Li et al. [10] propose a
meta-learning fault diagnosis method for 10-way cross-domain
IFD from drive-end bearing to fan-end bearing. Feng et al.
[11] propose a meta-learning-based method to adapt to a newly
encountered fault category using a few sample.

Notations: We use calligraphy letters to represent the sets.
Vectors and matrices are in the form of lowercase and uppercase
bold letters, respectively. I means the identity matrix. (·)T
denotes matrix transpose. E (·) and ∥·∥ stand for the expectation
and the Euclidean norm, respectively. ∇(·) represents the
gradient. The d-dimensional real spaces is denoted by Rd.

III. METHOD

In this section, we present our approach and the pipeline is
shown in Fig. 1.

A. Federated Learning Formulation

As illustrated in Fig. 1, we consider a set of clients (organi-
zations or users) K = {1, · · · ,K} connect to a central server
through wireless communication. Clients only interact with the
server but cannot exchange data with each other. Each client
k ∈ K has it own dataset, denoted as Dk = {xxxk,j , yj}|Dk|

j=1 ,
where (xxxk,j , yj) is a datapoint with xxxk,j being the input and
yj being the class label. We further assume that the datasets
in different clients follow a different distribution Pk, i.e., Non
- independent and identically distributed (Non-IID).

Firstly, we aim to obtain a model that is trained over all the
clients without exchanging their local data with other clients
or the central server. To achieve that, we leverage federated
learning as the main framework. Defining fk(·) : Rd → R
as the loss (or network) corresponding to client k, federated
learning is to obtain a model with parameter θ by solving an
optimization problem, i.e.,

min
θ∈Rd

f(θ) :=
1

K

K∑
k=1

fk(θ), (1)

where fk(θ) represents the expected loss of client k, i.e.,

fk(θ) := E(xxxk,j ,yj)∼Pk
[lk(xxxk,j , yj ;θ)] .

In machine learning, lk(xxxk,j , yj ;θ) is the loss of the prediction
at datapoint (xxxk,j , yj) measured with parameter θ. To solve
problem (1), we can use the FedAvg [4], a federated learning
algorithm in which the server learns a shared model by
averaging the gradient updates of local clients.

B. Federated Meta-learning Framework

Note that scheme (1) develops a common output for all
clients, which relies on massive labeled data to train the
diagnosis model. However, due to data scarcity (i.e., few-shot)
and heterogeneity, the model obtained by (1) yields poor results
in the field of mechanical FD.

As such, we overcome this issue by incorporating meta-
learning into (1). The goal now is not to find a model which
performs well on all tasks. Instead, we explore an initialization
that performs well once it is performed on a new task, possibly
by one or a few steps of gradient descent, to solve the problem
of limited fault data. In particular, suppose each client takes the
same initialization and updates its loss function using one-step
gradient descent, we rewrite the form of (1) as

min
θ∈Rd

F (θ) :=
1

K

K∑
k=1

fk(θ − α∇fk(θ)), (2)

where F is the global meta-learner to be learned. The learning
rate α ⩾ 0 can be fixed as a hyperparameter or learned [12].
(2) is a joint optimization problem, which incorporates meta-
learning into the federated learning framework, and is called
our Federated Meta-learning framework.

To solve (2), we can follow the similar principles of FedAvg,
i.e., the server updates the global meta-learner F by calculating



the average of the local meta-learners F1, · · · , FK , where the
local meta-learner Fk associated with client k is defined as

Fk(θ) := fk(θ − α∇fk(θ)). (3)

It is worth noting that FedAvg’s server performs averaging
of local client-side gradient updates, whereas our Federated
Meta-learning framework’s server performs averaging of local
meta-learner. Due to this difference, we perform an algorithm
convergence analysis in Section IV.

Next, we describe the learning process of (2). At each
communication round t ∈ [1, T ], the server chooses a fraction
of clients with size rK (r ∈ (0, 1]) and send current global
meta-learner θt to these clients. Each selected client k sets
initializes θk

t+1,0 = θt, and performs local computations based
on its local dataset. In particular, these local computations
generate a local sequence {θk

t+1,i}τi=0 by

θk
t+1,i = θk

t+1,i−1 − β∇Fk(θ
k
t+1,i−1), (4)

where τ is a hyperparameter representing the number of local
iterations (1 ⩽ i ⩽ τ ), and β is the learning rate. Then, θk

t+1,i

is used as the starting point for the next iteration at client k.
Similar to most initialization based meta learning algorithms
[7], in this paper, ∇Fk(θ

k
t+1,i−1) is computed by two-stage

updates, which are called as inner update and outer update
respectively. In meta-learning, a model is first trained on a large
number of tasks T , which are generated by sampling client
data. The task Tk of client k in the meta-training consists of a
support set DTk

S and a query set DTk

Q . With these definitions,
we introduce Inner update and Outer update as follows:

• Inner Update: After pulling global meta-learner θt from
server, client k firstly adapts θk

t+1,i−1 on the support set

DTk

S , the parameters θk
t+1,i−1 become θ

k

t+1,i by

θ
k

t+1,i = θk
t+1,i−1 − α∇fk(θk

t+1,i−1;D
Tk

S ), (5)

where θk
t+1,0 = θt.

• Outer Update: Then, the model with parameter θ
k

t+1,i

is evaluated on the query set DTk

Q , and some test loss

fk(θ
k

t+1,i;D
Tk

Q ) is computed to reflect the training ability
of local meta-learner Fk(θ

k
t ). Thus ∇Fk(θ

k
t+1,i−1) in (4)

is calculated by

∇Fk(θ
k
t+1,i−1) =

∂fk(θ
k

t+1,i−1;D
Tk

Q )

∂θk
t+1,i−1

=
∂fk(θ

k

t+1,i−1;D
Tk

Q )

∂θ
k

t+1,i−1

∂θ
k

t+1,i−1

∂θk
t+1,i−1

= ∇fk(θk
t+1,i−1 − α∇fk(θk

t+1,i−1);D
Tk

Q )

(I− α∇2fk(θ
k
t+1,i−1;D

Tk

S )).

Finally, for i = τ , the selected clients transmit their local
meta-learner θk

t+1,τ to the server. The server updates the global

Algorithm 1: FedMeta-FFD Framework with MAML
Input: Learning rate α and β, and fraction of active

clients r.
Output: global meta-learner F with parameter θT .

1 Server initializes global meta-learner F (θ0);
2 for each round t = 1, 2, · · · to T do
3 Sample a set Kt with size rK;
4 for each client k ∈ Kt in parallel do
5 Pull global meta-learner θt from server, set

θk
t+1,0 ← θt;

6 for i : 1 to τ do
7 Sample support set DTk

S and query set DTk

Q ;
// Inner update;

8 Compute θ
k

t+1,i by (5);
// Outer update;

9 Compute θk
t+1,i by (4);

10 end
11 Return θk

t+1,τ to server;
12 end

// Global aggregation
13 Server update meta-learner parameters by (6) ;
14 end

meta-learner by computing the average of the local meta-learner
from these selected clients using

θt+1 =
1

rK

K∑
k=1

θk
t+1,τ . (6)

As such, once the t-th communication round ends, then the
(t+ 1)-th round follows.

C. Federated Meta-learning Framework for IFD Task

By solving problem (2), we obtain an initial model (global
meta-learner). Once applied to the few-shot fault datasets,
Eqn.(2) is termed as Few-shot Fault Diagnosis method with
Federated Meta-learning framework (FedMeta-FFD). Algo-
rithm 1 provides the the procedures of FedMeta-FFD with
MAML, i.e., FedMeta-FFD(MAML).

• Step 1: The selected clients pull the global meta-learner
from the server and set local meta-learner θk

t+1,0 ← θt
(line 5);

• Step 2: Each selected client updates local meta-learner
through two-stage update, inner update (line 8) and outer
updates (line 9), respectively.

• Step 3: Each client returns updated local meta-learner
θk
t+1,τ to the server (line 11);

• Step 4: The server aggregates all updated local meta-
learner (line 13) and then the next round follows until
convergence.

In addition, we implement another version of FedMeta-FFD,
i.e., FedMeta-FFD(SGD), in which clients perform training
using Meta-SGD [12]. Meta-SGD supports a plug-and-play



improvement to enhance the performance of meta-learning,
where the learning rate of inner update is a learned parameter.

IV. CONVERGENCE ANALYSIS

In this section, we present the convergence analysis of
algorithm 1 in a non-convex setting. In contrast to existing
research works, we explicitly show that task similarity and
the number of local updates have a significant impact on
convergence.

Assumption 1: Consider a set of clients K, for every k ∈ K,
the loss function fk is Lk − smooth, i.e.,

∥∇fk(θ1)−∇fk(θ2)∥ ≤ Lk∥θ1 − θ2∥,∀θ1, θ2 ∈ Rd, (7)

and also, the gradient ∇fk is bounded by a nonnegative
constant Bk, i.e.,

∥∇fk(θ)∥ ≤ Bk. (8)

Assumption 2: Each loss function fk is H−strongly convex,
i.e. for all θ1, θ2 ∈ Rd,

∥∇fk(θ1)−∇fk(θ2)∥ ≥ H∥θ1 − θ2∥. (9)

Our Assumption 1 and 2 simply follows many convergence
analyses [13], [14]. L − smooth and H − strongly convex
characterize the maximum/minimum rate of change of the
corresponding gradient of the loss function. The outer update
needs second order derivative in fk Section III. Therefore, we
apply a regularity condition to the Hessian of fk.

Assumption 3: The Hessian of each fk is ρk − Lipschitz,
i.e, for all θ1, θ2 ∈ Rd,

∥∇2fk(θ1)−∇2fk(θ2)∥ ≤ ρk∥θ1−θ2∥,∀θ1,θ2 ∈ Rd. (10)

For simplicity, we let B := maxk Bk, L := maxk Lk, and
ρ := maxk ρk.

Assumption 4: There exists nonnegtive constant γG ≥ 0 and
γH ≥ 0 such that the variances of gradient and Hessian satisfy

1

K

K∑
k=1

∥∇fk(θ)−∇f(θ)∥2 ≤ γ2G, (11)

1

K

K∑
k=1

∥∇2fk(θ)−∇2f(θ)∥2 ≤ γ2H . (12)

Assumption 4 characterizes the similarity between clients. Intu-
itively, a small constant implies that the tasks are more similar
in different clients. With Assumption 1-3, the local meta-learner
Fk(θ) and their average function F (θ) = (1/K)

∑K
k=1 Fk(θ)

are smooth and strongly convex. To complete the convergence
analysis we also need the following intermediate results.

Lemma 1: Let ψ : Rd → R be an arbitrary function which is
L− sommth and H− strongly convex. The Jacobian of U(·)
is given by U(θ) = I−α∇2ψ(θ). Since HI ≤ ∇2ψ(θ) ≤ LI
for ∀θ ∈ Rd, we can bound be Jacobian as

(1− αL)I ≤ ∇U(θ) ≤ (1− αH)I. (13)

Lemma 2: If Assumptions 1-3 hold, local meta-learner
Fk is LF − smooth convex and HF − strongly convex

with parameter LF = (1 − αH)2L + αρB and HF =
(1− αL)2H − αρB. As a consequence, the average function
F (θ) = (1/K)

∑K
k=1 Fk(θ) is also smooth and strongly

convex with parameter LF and HF .
Two additional metrics are required for convergence proof,
i.e., the similarity between local meta-learner and global meta-
learner, and the upper bound of the gradient estimation variance
of the loss function. Therefore, we provide Lemma 3 and
Lemma 4 next.

Lemma 3: There exists constants γF such that for any θ ∈ Rd

and k ∈ K

1

K

K∑
k=1

∥∇Fk(θ)−∇F (θ)∥2 ≤ γ2F ,

where
γ2F := 3B2α2γ2H + 3(1 + α2L2)

[
α(1− αH)2 + 8α2L2

]
γ2G.

Due to the page limitation, all the detailed proof of this paper
will be given in our extended version. Lemma 3 describes the
similarities between local meta-learners, while establishing
the connections between local meta-learners and global target,
which makes it possible for analyzing the global loss.

Lemma 4: We further define a virtual index, i.e., the average
of local update at round t on τ step θt,i = (1/K)

∑K
k=1 θ

k
t,i.

Suppose that the conditions in Assumption 1 and 4 are satisfied,
for any 0 ≤ i ≤ τ , we have

E

[
1

K

K∑
k=1

∥θk
t,i − θt,i∥2

]
≤ σ2

θ := 35β2(τ − 1)τγ2F .

Based on Lemma 1-4, we present our main conclusion next.
Theorem 1: Suppose that Assumptions 1-4 hold, and the local

update and global aggregation satisfy (4) and (6) respectively.
Considering performing Algorithm 1 for T rounds with τ local
updates in each round, the following fact holds true:

E(T ) =
1

τT

T−1∑
t=0

τ−1∑
i=0

E
[
∥∇F (θt+1,i)∥2

]
≤ F (θ0)− F (θ∗) + βτT (1 + 2LFβ)L

2
Fσ

2
θ

βτT (1− 2LFβ)
.

We obtain the upper bound of E(T ), which indicates the
convergence rate, i.e., as t = 1, 2, · · · , T , if E(T )/T → 0,
and hence consider the algorithm to be convergent. Note that,
σ2
θ := 35β2(τ − 1)τγ2F , and θt+1,i is the average of local

updates at time i of round t, i.e., θt+1,i = (1/K)
∑K

k=1 θ
k
t+1,i,

and in particular, θk
t+1,0 = θt and θt+1 = (1/K)θk

t+1,τ .
Note that σ2

θ positive correlation with γ2F , which increases
with γ2H and γ2G. Thus γ2F indicates how the task similarity
impacts the convergence performance, i.e., γ2H and γ2G decrease
accelerates the global meta-learner gradient decrease, resulting
in faster convergence. In addition, note that β is the learning
rate, we can make it arbitrary and small, i.e., if given a fixed
train rounds T the convergence increases with the number of
local updates τ increasing.



V. EXPERIMENTS

In this section, we study the effectiveness of FedMeta-FFD
with limited fault diagnosis data (i.e., few-shot). In particular,
we consider the multi-class classification problem over two
real-world fault diagnosis datasets, CWRU [15] and PU [16].

The data among clients are divided as follows: (1) We use
50 clients for training (containing 75% of the data) and 50
clients for testing (containing 25% of the data). The data in
each client is divided into a support set (containing 20% of
the data) and a query set (containing 80% of the data). (2)
To simulate Non-IID, we follow [17], where each client is
configured to contain only 2 labels and the amount of data in
different clients is uneven (see Table I). (3) During testing, each
local client has the same data distribution as the training client,
and each new client has a data distribution that is completely
different from all the clients participating in the training.

A. Experiment Setup

We conducted experiments on a computer server with
NVIDIA RTX 3090. All approaches are implemented based
on FedML, which is a popular federated learning library [18].

1) Baselines. We compare it with the following methods:
• FedAvg: A celebrated FL algorithm [4].
• FedAvgMeta: This algorithm allows the global model

obtained by the FedAvg algorithm to perform a fine-tune
(one or several times) on the client’s support set during
the inference phase.

2) Evaluation Metrics. The study evaluates the model through
the following metrics: accuracy in correlation with all data
points (accmicro), accuracy in correlation with all clients
(accmacro), and F1-score (F1macro).

3) Model Architecture. The model receives flattened input
of size (1 × 784). Two linear layers were used for feature
extraction with a hidden layer size of 100 and an output layer
size of 10 (note that for the PU dataset the output layer size
is 8). The activation functions used are ReLU and Softmax.
4) Hyperparameters. In this paper, hyperparameters include
the number of rounds of communication between the server
and the client (T = 300), the number of clients involved in
each round of training (|Kt| = 5), the number of client local
updates (steps = 1), the batchsize (batchsize = 64), and the
learning rate of the client for different datasets and methods
(we set the learning rate of FedMeta-FFD (MAML) to 0.001
for both inner update and outer update).

B. Results and Discussion

The results are in Table II. First, comparing different methods,
we notice that FedAvg and FedAvgMeta perform significantly
worse than FedMeta-FFD(MAML) and FedMeta-FFD(SGD).
This is mainly due to 1) the scarcity of client training samples,
as in Table I, there are clients with only 35 fault samples in the
CWRU dataset; 2) the data for each client is Non-IID, FedAvg
and FedAvgMeta obtained from the global model is difficult
to adapt to new clients. Second, FedMeta-FFD(SGD) achieves
the highest accuracies in different cases, increasing the final
accmicro by 35.52%-47.05%.

C. Ablation Experiment

Our analysis in Section IV shows that task similarity and
local updates significantly affect the convergence performance.
Here, we designed ablation experiments to verify one of the
metrics, i.e., local updates. We also vary the fraction of data
used as a support set for each client to examine how efficiently
FedMeta-FFD adapts to new clients with few-shot data.

1) Local Updates: We set the number of local updates to
be 1 and 3 for all methods on the CWRU dataset, and the
results are in Fig. 2 (local client) and Fig. 3 (new client). We
found that the performance of all methods increased when
the number of local updates was slightly increased. Secondly,
comparing the convergence of FedAvg and FedMeta-FFD, the
latter has much faster and more stabler convergence with the
merit of meta-learning. This validates the positive impact of
meta-learning on the federated learning system.

Fig. 2. accmicro on local client, CWRU dataset.

Fig. 3. accmicro on new client, CWRU dataset.

2) The Fraction of Support Set: We vary the fraction p ∈
{0.2, 0.5, 0.8} of data used as support set for each client to
study how efficiently that FedMeta-FFD(SGD) adapts to new
clients with few-shot data. The results are presented in Fig. 4
(new client). We note that when p = 0.5, FedMeta-FFD(SGD)
achieves the highest accuracies. Compared to p = 0.2 (or
0.8), p = 0.5 indicates a more balanced amount of data in



TABLE I
STATISTICS ON CWRU AND PU DATASET

Dataset #clients #samples #classes #samples per client #classes/clientmin mean std max
CWRU 50 28,000 10 35 560 566 2,568 2

PU 50 52,497 8 420 5,291 4,381 18,970 2

TABLE II
CLASSIFICATION RESULTS (%) IN CWRU AND PU DATASETS. BEST RESULTS PER METRICS ARE BLODFACED

CWRU PU
accmicro accmacro F1macro accmicro accmacro F1macro

local client

FedAvg 29.48 21.90±21.85 18.03±17.37 36.71 22.08±16.18 18.06±12.23
FedAvgMeta 28.19 26.37±29.00 20.25±23.10 43.28 25.83±27.56 19.81±21.49
FedMeta-FFD(MAML) 62.00 43.21±28.78 38.64±27.63 71.13 67.43±18.22 46.70±15.32
FedMeta-FFD(SGD) 76.53 72.28±15.20 50.70±18.86 72.23 71.38±11.75 47.69±13.00

unseen client

FedAvg 21.72 18.04±25.72 14.46±21.64 34.89 18.08±16.47 16.06±13.11
FedAvgMeta 20.00 17.48±22.10 13.00±16.00 25.44 20.81±13.44 18.83±11.21
FedMeta-FFD(MAML) 31.78 21.75±22.58 18.19±18.92 63.04 47.19±31.79 34.00±23.90
FedMeta-FFD(SGD) 68.04 64.59±21.02 46.08±19.55 73.28 71.96±14.40 47.00±15.75

the support and query sets. Thus we can learn that the local
meta-learner achieves better performance when the ratio of
data in the support and query sets is more balanced.

Fig. 4. accmicro of FedMeta-FFD (SGD) for different p values, new client.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the FedMeta-FFD for intelligent
fault diagnosis in Industrial IoT. Our method can quickly adapt
to a new machine or a newly encountered fault category
with just a few labeled examples and training iterations.
We did the necessary convergence analysis and build the
corresponding ablation experiments. Our method outperforms
existing approaches in two real-world fault diagnosis datasets,
sometimes surpassing large margins. In the future, we plan to
explore a robust personalized federated learning framework for
intelligent fault diagnosis tasks.
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